Enciclopedia


IT pro


Gestión de proyectos


















Diagrama de Gantt















USESFRITBR


Septiembre 2017



Qué es el diagrama de GANTT y para qué sirve
Cómo crear un diagrama de Gantt
Acontecimientos en el diagrama de Gantt
Asignar recursos en el diagrama de Gantt






Qué es el diagrama de GANTT y para qué sirve

El diagrama de Gantt es una herramienta que permite modelar la planificación de las tareas necesarias para la realización de un proyecto. Esta herramienta fue inventada por Henry L. Gantt en 1917.




Debido a la relativa facilidad de lectura de los diagramas de Gantt, esta herramienta es utilizada por casi todos los directores de proyecto en diversos sectores. El diagrama de Gantt permite al director de proyecto realizar una representación gráfica del progreso de la misión. También es un buen medio de comunicación entre las diversas personas involucradas en el proyecto.




Este tipo de modelo es particularmente fácil de implementar con una simple hoja de cálculo como EXCEL, aunque existen herramientas especializadas, la más conocida es Microsoft Project. También hay programas similares y gratuitosc como GANTT PROJECT o programas ONLINE como TOMPLANNER O GATTPRO



Cómo crear un diagrama de Gantt

En un diagrama de Gantt, cada tarea es representada por una línea, mientras que las columnas representan los días, semanas o meses del programa, dependiendo de la duración del proyecto. El tiempo estimado para cada tarea se muestra a través de una barra horizontal cuyo extremo izquierdo determina la fecha de inicio prevista y el extremo derecho determina la fecha de finalización estimada. Las tareas se pueden colocar en cadenas secuenciales o se pueden realizar simultáneamente:







Si las tareas son secuenciales, las prioridades se pueden confeccionar utilizando una flecha que desciende de las tareas más importantes hacia las tareas menos importantes. La tarea menos importante no puede llevarse a cabo hasta que no se haya completado la más importante:







A medida que progresa una tarea, se completa proporcionalmente la barra que la representa hasta llegar al grado de finalización. Así, es posible obtener una visión general del progreso del proyecto rastreando una línea vertical a través de las tareas en el nivel de la fecha actual. Las tareas ya finalizadas se colocan a la izquierda de esta línea; las tareas que aún no se han iniciado se colocan a la derecha, mientras que las tareas que se están llevando a cabo atraviesan la línea. Si la línea está cubierta en la parte izquierda, la tarea está demorada.




Idealmente, un diagrama como este no debe incluir más de 15 o 20 tareas para que pueda caber en una sola hoja con formato A4. Si el número de tareas es mayor, es posible crear diagramas adicionales en los que se detallan las planificaciones de las tareas principales.



Acontecimientos en el diagrama de Gantt

Adicionalmente, es posible que los eventos más importantes, que no sean las tareas mismas, se muestren en la planificación como puntos de conexión del proyecto: estos se denominan acontecimientos.




Los acontecimientos permiten que el proyecto se realice en fases claramente indentificables, evitando que se prolongue la finalización del mismo. Un acontecimiento podría ser la producción de un documento, la realización de una reunión o el producto final de un proyecto. Los acontecimientos son tareas de duración cero, representadas en el diagrama por un símbolo específico, frecuentemente un triángulo invertido o un diamante:









Asignar recursos en el diagrama de Gantt

Generalmente es posible (y útil) mostrar referencias en el diagrama, humanas o materiales, para permitir calcular el tiempo restante y tener una idea del costo global. Por lo general, solo serán necesarios los nombres o las iniciales de los responsables.





Aportes del diagrama de Gantt a la gestión de proyectos


Para la gestión de proyectos, el Diagrama de Gantt se ha desvelado como un método muy eficaz. Permite visualizar las actividades a realizar, la interdependencia entre ellas y su planificación en el tiempo del proyecto.


Sus usos más frecuentes se vinculan a proyectos y planes de acción, procesos de mejora e, incluso, resolución de problemas. En realidad, se puede utilizar para planificar cualquier tipo de proceso simple, a ser posible de menos de veinticinco tareas, y que esté definido temporalmente. En otras ocasiones se emplea para fragmentar proyectos complejos en diferentes partes.


Intentar explicar lo mismo con palabras resultaría demasiado confuso. Por eso, está especialmente recomendado cuando el propósito es comunicar las diferentes etapas de un proyecto a las personas involucradas. Demasiada complejidad produciría sobrecarga de información y la gente se sentiría abrumada.

Pasos básicos para elaborar un Diagrama de Gantt


Si te interesa el Diagrama de Gantt como herramienta de gestión de proyectos, lo más recomendables es que sigas los siguientes pasos:


1) El primer paso para elaborar un diagrama de Gantt pasa por hacer una lista de todas las actividades que puede requerir un proyecto. Puede que, como resultado, obtengamos una lista demasiado larga. Sin embargo, a partir de esto definiremos tiempos para la realización de cada tarea, prioridades y orden de consecución. Además, agruparemos las actividades por partidas específicas para simplificar al máximo la gráfica.


2) El diseño del diagrama de Gantt debe ser lo más esquemático posible. Debe transmitir lo más importante, ya que será consultado con frecuencia. Las personas implicadas en el proceso deben quedarse con una idea clara de lo que está sucediendo en un momento concreto del proceso.


3) Si se desea, se puede crear y mantener actualizada otra versión más detallada para la persona que ejecuta el proyecto. Gracias al diagrama de Gantt, es posible una monitorización clara del progreso para descubrir con facilidad los puntos críticos, los períodos de inactividad y para calcular los retrasos en la ejecución. De este modo, ayuda a prever posibles costes sobrevenidos y permite reprogramar las tareas de acuerdo a las nuevas condiciones.


4) Finalmente, cabe decir que por su sencillez, facilidad de uso y bajo coste se emplea con mucha frecuencia en pequeñas y medianas empresas.






El gráfico del diagrama de Gantt es, en realidad, un sistema de coordenadas con dos ejes esenciales: en el eje vertical se ubican las tareas a realizar desde el inicio hasta el fin del proyecto, mientras en el horizontal se ponen los tiempos.


En función del tipo de actividades que conformen el proyecto, los valores ubicados en el eje horizontal deben definirse en días, semanas, meses, semestres o, incluso, años.


En una etapa posterior, se le asigna a cada tarea un bloque rectangular que indique su grado de progreso y el tiempo restante para su ejecución plena. Para las tareas críticas o estructurales del proceso, lo más recomendable es usar un color distinto.





ejercicio 1

















ROBOTICA

Definicion

La robótica es una ciencia o rama de la tecnología, que estudia el diseño y construcción de máquinas capaces de desempeñar tareas realizadas por el ser humano o que requieren del uso de inteligencia. Las ciencias y tecnologías de las que deriva podrían ser: el álgebra, los autómatas programables, las máquinas de estados, la mecánica o la informática.

Historia
La historia de la robótica ha estado unida a la construcción de “artefactos”, que trataban de materializar el deseo humano de crear seres semejantes a nosotros que nos descargasen del trabajo. El ingeniero español Leonardo Torres Quevedo (que construyó el primer mando a distancia para su torpedo automóvil mediante telegrafía sin hilodrecista automático, el primer transbordador aéreo y otros muchos ingénios) acuñó el término “automática” en relación con la teoría de la automatización de tareas tradicionalmente asociadas a los humanos.


Karel Capek, un escritor checo, acuño en 1921 el término Robot en su obra dramática “Rossum’s Universal Robots / R.U.R.”, a partir de la palabra checa Robbota, que significa servidumbre o trabajo forzado. El término robótica es acuñado por Isaac Asimov, definiendo a la ciencia que estudia a los robots. Asimov creó también las Tres Leyes de la Robótica. En la ciencia ficción el hombre ha imaginado a los robots visitando nuevos mundos, haciéndose con el poder, o simplemente aliviándonos de las labores caseras.La Robótica ha alcanzado un nivel de madurez bastante elevado en los últimos tiempos, y cuenta con un correcto aparato teórico. Sin embargo, al intentar reproducir algunas tareas que para los humanos son muy sencillas, como andar, correr o coger un objeto sin romperlo, no se ha obtenido resultados satisfactorios, especialmente en el campo de la robótica autónoma. Sin embargo se espera que el continuo aumento de la potencia de los ordenadores y las investigaciones en inteligencia artificial, visión artificial, la robótica autónoma y otras ciencias paralelas nos permitan acercarnos un poco más cada vez a los milagros soñados por los primeros ingenieros y también a los peligros que nos adelanta la ciencia ficción.


Introducción a la Robótica

¿Qué es la robótica?
¿De dónde proviene la palabra robot?. ¿Qué es un robot?
Tipos de robot
Impacto de la robótica
¿Qué esperamos?




¿Qué es la robótica?

El término "Robótica" fue acuñado por Isaac Asimov para describir la tecnología de los robots. Él mismo predijo hace años el aumento de una poderosa industria robótica, predicción que ya se ha hecho realidad. Recientemente se ha producido una explosión en el desarrollo y uso industrial de los robots tal que se ha llegado al punto de hablar de "revolución de los robots" y "era de los robots".
El término robótica puede ser definido desde diversos puntos de vista:


Con independencia respecto a la definición de "robot":
"La Robótica es la conexión inteligente de la percepción a la acción"... [Michael Brady and Richard Paul, editors. Robotics Research: The First International Symposium. The MIT Press, Cambridge MA, 1984]
En base a su objetivo:
"La Robótica consiste en el diseño de sistemas. Actuadores de locomoción, manipuladores, sistemas de control, sensores, fuentes de energía, software de calidad--todos estos subsistemas tienen que ser diseñados para trabajar conjuntamente en la consecución de la tarea del robot"...
[Joseph L. Jones and Anita M. Flynn. Mobile robots: Inspirations to implementation. A K Peters Ltd, 1993]
Supeditada a la propia definición del término robot:
"La Robótica describe todas las tecnologías asociadas con los robots"


¿De dónde proviene la palabra robot?. ¿Qué es un robot?

La palabra robot fue usada por primera vez en el año 1921, cuando el escritor checo Karel Capek (1890 - 1938) estrena en el teatro nacional de Praga su obra Rossum's Universal Robot (R.U.R.). Su origen es de la palabra eslava robota, que se refiere al trabajo realizado de manera forzada. La trama era sencilla: el hombre fabrica un robot, luego el robot mata al hombre.
Muchas películas han seguido mostrando a los robots como máquinas dañinas y amenazadoras. Sin embargo, películas más recientes, como la saga de "La Guerra de las Galaxias" desde 1977, retratan a robots como "C3PO" y "R2D2" como ayudantes del hombre. "Número 5" de "Cortocircuito" y "C3PO" realmente tienen apariencia humana. Estos robots que se fabrican con look humano se llaman ‘androides’.
La mayoría de los expertos en Robótica afirmaría que es complicado dar una definición universalmente aceptada. Las definiciones son tan dispares como se demuestra en la siguiente relación:

Ingenio mecánico controlado electrónicamente, capaz de moverse y ejecutar de forma automática acciones diversas, siguiendo un programa establecido.
Máquina que en apariencia o comportamiento imita a las personas o a sus acciones como, por ejemplo, en el movimiento de sus extremidades
Un robot es una máquina que hace algo automáticamente en respuesta a su entorno.
Un robot es un puñado de motores controlados por un programa de ordenador.
Un robot es un ordenador con músculos.

Es cierto, como acabamos de observar, que los robots son difíciles de definir. Sin embargo, no es necesariamente un problema el que no esté todo el mundo de acuerdo sobre su definición. Quizás, Joseph Engelberg (padre de la robótica industrial) lo resumió inmejorablemente cuando dijo: "Puede que no se capaz de definirlo, pero sé cuándo veo uno".La imagen del robot como una máquina a semejanza del ser humano, subyace en el hombre desde hace muchos siglos, existiendo diversas realizaciones con este fin.Pero el robot industrial, que se conoce y emplea en nuestros días, no surge como consecuencia de la tendencia o afición de reproducir seres vivientes, sino de la necesidad. Fue la necesidad la que dio origen a la agricultura, el pastoreo, la caza, la pesca, etc. Más adelante, la necesidad provoca la primera revolución industrial con el descubrimiento de la máquina de vapor de Watt y, actualmente, la necesidad ha cubierto de ordenadores la faz de la tierra.

Inmersos en la era de la informatica, la imperiosa necesidad de aumentar la productividad y mejorar la calidad de los productos, ha hecho insuficiente la automatización industrial rígida, dominante en las primeras décadas del siglo XX, que estaba destinada a la fabricación de grandes series de una restringida gama de productos. Hoy día, más de la mitad de los productos que se fabrican corresponden a lotes de pocas unidades.
Al enfocarse la producción industrial moderna hacia la automatización global y flexible, han quedado en desuso las herramientas, que hasta hace poco eran habituales:

Forja, prensa y fundición
Esmaltado
Corte
Encolado
Desbardado
Pulido.


Finalmente, el resto de los robots instalados en 1979 se dedicaban al montaje y labores de inspección. En dicho año, la industria del automóvil ocupaba el 58% del parque mundial, siguiendo en importancia las empresas constructoras de maquinaria eléctrica y electrónica. En 1997 el parque mundial de robots alcanzó la cifra de aproximadamente 830.000 unidades, de los cuales la mitad se localizaba en Japón.





Tipos de robot
Desde un punto de vista muy general los robots pueden ser de los siguientes tipos:
Androides
Una visión ampliamente compartida es que todos los robots son "androides". Los androides son artilugios que se parecen y actúan como seres humanos. Los robots de hoy en día vienen en todas las formas y tamaños, pero a excepción de los robots que aparecen en las ferias y espectáculos, no se parecen a las personas y por tanto no son androides. Actualmente, los androides reales sólo existen en la imaginación y en las películas de ficción.

Móviles
Los robots móviles están provistos de patas, ruedas u orugas que los capacitan para desplazarse de acuerdo a su programación. Elaboran la información que reciben a través de sus propios sistemas de sensores y se emplean en determinado tipo de instalaciones industriales, sobre todo para el transporte de mercancías en cadenas de producción y almacenes. También se utilizan robots de este tipo para la investigación en lugares de difícil acceso o muy distantes, como es el caso de la exploración espacial y de las investigaciones o rescates submarinos.



Industriales
Los robots industriales son artilugios mecánicos y electrónicos destinados a realizar de forma automática determinados procesos de fabricación o manipulación.
También reciben el nombre de robots algunos electrodomésticos capaces de realizar varias operaciones distintas de forma simultánea o consecutiva, sin necesidad de intervención humana, como los también llamados «procesadores», que trocean los alimentos y los someten a las oportunas operaciones de cocción hasta elaborar un plato completo a partir de la simple introducción de los productos básicos.
Los robots industriales, en la actualidad, son con mucho los más frecuentemente encontrados. Japón y Estados Unidos lideran la fabricación y consumo de robots industriales siendo Japón el número uno. Es curioso ver cómo estos dos países han definido al robot industrial:
La Asociación Japonesa de Robótica Industrial (JIRA): Los robots son "dispositivos capaces de moverse de modo flexible análogo al que poseen los organismos vivos, con o sin funciones intelectuales, permitiendo operaciones en respuesta a las órdenes humanas".
El Instituto de Robótica de América (RIA): Un robot industrial es "un manipulador multifuncional y reprogramable diseñado para desplazar materiales, componentes, herramientas o dispositivos especializados por medio de movimientos programados variables con el fin de realizar tareas diversas".




Médicos
Los robots médicos son, fundamentalmente, prótesis para disminuidos físicos que se adaptan al cuerpo y están dotados de potentes sistemas de mando. Con ellos se logra igualar con precisión los movimientos y funciones de los órganos o extremidades que suplen.

Teleoperadores
Hay muchos "parientes de los robots" que no encajan exactamente en la definición precisa. Un ejemplo son los teleoperadores. Dependiendo de cómo se defina un robot, los teleoperadores pueden o no clasificarse como robots. Los teleoperadores se controlan remotamente por un operador humano. Cuando pueden ser considerados robots se les llama "telerobots". Cualquiera que sea su clase, los teleoperadores son generalmente muy sofisticados y extremadamente útiles en entornos peligrosos tales como residuos químicos y desactivación de bombas.


Se puede concretar más, atendiendo a la arquitectura de los robots. La arquitectura, definida por el tipo de configuración general del robot, puede ser metamórfica. El concepto de metamorfismo, de reciente aparición, se ha introducido para incrementar la flexibilidad funcional de un robot a través del cambio de su configuración por el propio robot. El metamorfismo admite diversos niveles, desde los más elementales -cambio de herramienta o de efector terminal-, hasta los más complejos como el cambio o alteración de algunos de sus elementos o subsistemas estructurales.

Los dispositivos y mecanismos que pueden agruparse bajo la denominación genérica del robot, tal como se ha indicado, son muy diversos y es por tanto difícil establecer una clasificación coherente de los mismos que resista un análisis crítico y riguroso. La subdivisión de los robots, con base en su arquitectura, se hace en los siguientes grupos: Poliarticulados, Móviles, Androides, Zoomórficos e Híbridos.
Poliarticulados 
Bajo este grupo están los robots de muy diversa forma y configuración cuya característica común es la de ser básicamente sedentarios -aunque excepcionalmente pueden ser guiados para efectuar desplazamientos limitados- y estar estructurados para mover sus elementos terminales en un determinado espacio de trabajo según uno o más sistemas de coordenadas y con un número limitado de grados de libertad. En este grupo se encuentran los manipuladores y algunos robots industriales, y se emplean cuando es preciso abarcar una zona de trabajo relativamente amplia o alargada, actuar sobre objetos con un plano de simetría vertical o reducir el espacio ocupado en la base. 
Móviles 
Cuentan con gran capacidad de desplazamiento, basados en carros o plataformas y dotados de un sistema locomotor de tipo rodante. Siguen su camino por telemando o guiándose por la información recibida de su entorno a través de sus sensores.
Las tortugas motorizadas diseñadas en los años cincuenta, fueron las precursoras y sirvieron de base a los estudios sobre inteligencia artificial desarrollados entre 1965 y 1973 en la Universidad de Stanford.
Estos robots aseguran el transporte de piezas de un punto a otro de una cadena de fabricación. Guiados mediante pistas materializadas a través de la radiación electromagnética de circuitos empotrados en el suelo, o a través de bandas detectadas fotoeléctricamente, pueden incluso llegar a sortear obstáculos y están dotados de un nivel relativamente elevado de inteligencia.


Androides 
Estos intentan reproducir total o parcialmente la forma y el comportamiento cinemático del ser humano. Actualmente los androides son todavía dispositivos muy poco evolucionados y sin utilidad práctica, y destinados, fundamentalmente, al estudio y experimentación.
Uno de los aspectos más complejos de estos robots, y sobre el que se centra la mayoría de los trabajos, es el de la locomoción bípeda. En este caso, el principal problema es controlar dinámica y coordinadamente en el tiempo real el proceso y mantener simultáneamente el equilibrio del robot . 
Zoomórficos 
Los robots zoomórficos, que considerados en sentido no restrictivo podrían incluir también a los androides, constituyen una clase caracterizada principalmente por sus sistemas de locomoción que imitan a los diversos seres vivos.
A pesar de la disparidad morfológica de sus posibles sistemas de locomoción es conveniente agrupar a los robots zoomórficos en dos categorías principales: caminadores y no caminadores. El grupo de los robots zoomórficos no caminadores está muy poco evolucionado. Cabe destacar, entre otros, los experimentados efectuados en Japón basados en segmentos cilíndricos biselados acoplados axialmente entre sí y dotados de un movimiento relativo de rotación. En cambio, los robots zoomórficos caminadores multípedos son muy numerosos y están siendo experimentados en diversos laboratorios con vistas al desarrollo posterior de verdaderos vehículos terrenos, pilotados o autónomos, capaces de evolucionar en superficies muy accidentadas. Las aplicaciones de estos robots serán interesante en el campo de la exploración espacial y en el estudio de los volcanes.

Híbridos 
Estos robots corresponden a aquellos de difícil clasificación cuya estructura se sitúa en combinación con alguna de las anteriores ya expuestas, bien sea por conjunción o por yuxtaposición. Por ejemplo, un dispositivo segmentado, articulado y con ruedas, tiene al mismo tiempo uno de los atributos de los robots móviles y de los robots zoomórficos. De igual forma pueden considerarse híbridos algunos robots formados por la yuxtaposición de un cuerpo formado por un carro móvil y de un brazo semejante al de los robots industriales. En parecida situación se encuentran algunos robots antropomorfos y que no pueden clasificarse ni como móviles ni como androides, tal es el caso de los robots personales.



Impacto de la robótica

La Robótica es una nueva tecnología, que surgió como tal, hacia 1960. Han transcurrido pocos años y el interés que ha despertado, desborda cualquier previsión. Quizás, al nacer la Robótica en la era de la información, una propaganda desmedida ha propiciado una imagen irreal a nivel popular y, al igual que sucede con el microprocesador, la mitificación de esta nueva maquina, que de todas formas, nunca dejara de ser eso, una maquina.

Impacto en la Educación


El auge de la Robótica y la imperiosa necesidad de su implantación en numerosas instalaciones industriales, requiere el concurso de un buen número de especialistas en la materia. La Robótica es una tecnología multidisciplinar. Hace uso de todos los recursos de vanguardia de otras ciencias afines, que soportan una parcela de su estructura.
Destacan las siguientes:

Mecánica
Cinemática
Dinámica
Matemáticas
Automática
Electrónica
Informática
Energía y actuadores eléctricos, neumáticos e hidráulicos
Visión artificial
Sonido de máquinas
Inteligencia artificial.

Realmente la Robótica es una combinación de todas las disciplinas expuestas, más el conocimiento de la aplicación a la que se enfoca, por lo que su estudio se hace especialmente indicado en las carreras de Ingeniería Superior y Técnica y en los centros de formación profesional, como asignatura practica. También es muy recomendable su estudio en las facultades de informática en las vertientes dedicadas al procesamiento de imágenes, inteligencia artificial, lenguajes de robótica, programación de tareas, etc.
Finalmente, la Robótica brinda a investigadores y doctorados un vasto y variado campo de trabajo, lleno de objetivos y en estado inicial de desarrollo.
La abundante oferta de robots educacionales en el mercado y sus precios competitivos, permiten a los centros de enseñanza complementar un estudio teórico de la Robótica, con las prácticas y ejercicios de experimentación e investigación adecuados.
Una formación en robótica localizada exclusivamente en el control no es la más útil para la mayoría de los estudiantes, que de trabajar con robots lo harán como usuarios y no como fabricantes. Sin embargo, no hay que perder de vista que se esta formando a ingenieros, y que hay que proveerles de los medios adecuados para abordar, de la manera más adecuada, los problemas que puedan surgir en el desarrollo de su profesión.



Impacto en la automatización industrial


El concepto que existía sobre automatización industrial se ha modificado profundamente con la incorporación al mundo del trabajo del robot, que introduce el nuevo vocablo de "sistema de fabricación flexible", cuya principal característica consiste en la facilidad de adaptación de este núcleo de trabajo, a tareas diferentes de producción.
Las células flexibles de producción se ajustan a necesidades del mercado y están constituidas, básicamente, por grupos de robots, controlados por ordenador. Las células flexibles disminuyen el tiempo del ciclo de trabajo en el taller de un producto y liberan a las personas de trabajos desagradables y monótonos.
La interrelación de las diferentes células flexibles a través de potentes computadores, dará lugar a la factoría totalmente automatizada, de las que ya existen algunas experiencias.


Impacto en la competitividad


La adopción de la automatización parcial y global de la fabricación, por parte de las poderosas compañías multinacionales, obliga a todas las demás a seguir sus pasos para mantener su supervivencia.
Cuando el grado de utilización de maquinaria sofisticada es pequeño, la inversión no queda justificada. Para poder compaginar la reducción del número de horas de trabajo de los operarios y sus deseos para que estén emplazadas en el horario normal diurno, con el empleo intensivo de los modernos sistemas de producción, es preciso utilizar nuevas técnicas de fabricación flexible integral.


Impacto sociolaboral

El mantenimiento de las empresas y el consiguiente aumento en su productividad, aglutinan el interés de empresarios y trabajadores en aceptar, por una parte la inversión económica y por otra la reducción de puestos de trabajo, para incorporar las nuevas tecnologías basadas en robots y computadores.
Las ventajas de los modernos elementos productivos, como la liberación del, hombre de trabajos peligrosos, desagradables o monótonos y el aumento de la productividad, calidad y competitividad, a menudo, queda eclipsado por el aspecto negativo que supone el desplazamiento de mano de obra, sobre todo en tiempos de crisis. Este temor resulta infundado si se analiza con detalle el verdadero efecto de la robotización.


LEYES DE LA ROBOTICA
En las historias de robots de Isaac Asimov, éste prevé un mundo futuro en el que existen reglas de seguridad para que los robots no puedan ser dañinos para los seres humanos. Por tal razón Asimov propuso las siguientes tres leyes de la robótica:
1ª.- Un robot no puede dañar a un ser humano o, a través de la inacción, permitir que se dañe a un ser humano.

2ª.- Un robot debe obedecer las órdenes dadas por los seres humanos, excepto cuando tales órdenes estén en contra de la primera ley.

3ª.- Un robot debe proteger su propia existencia siempre y cuando esta protección no entre en conflicto con la primera y segunda ley.
Sin llegar a la ciencia-ficción, por ahora nos gustaría que los robots tuvieran las siguientes características:
Autónomos, que pudiesen desarrollar su tarea de forma independiente.
Fiables, que siempre realizasen su tarea de la forma esperada.
Versátiles, que pudiesen ser utilizados para varias tareas sin necesidad de modificaciones en su control.
Transmisiones y reductores


Transmisiones
Reductores

Las transmisiones son los elementos encargados de transmitir el movimiento desde los actuadores hasta lasarticulaciones. Se incluirán junto con las transmisiones a losreductores, encargados de adaptar el par y la velocidad de la salida del actuador a los valores adecuados para el movimiento de los elementos del robot.



Transmisiones

Dado que un robot mueve su extremo con aceleraciones elevadas, es de gran importancia reducir al máximo su momento de inercia. Del mismo modo, los pares estáticos que deben vencer losactuadores dependen directamente de la distancia de las masas al actuador. Por estos motivos se procura que los actuadores, por lo general pesados, estén lo mas cerca posible de la base del robot. Esta circunstancia obliga a utilizar sistemas de transmisión que trasladen el movimiento hasta las articulaciones, especialmente a las situadas en el extremo del robot. Asimismo, las transmisiones pueden ser utilizadas para convertir movimiento circular en lineal o viceversa, cuando sea necesario.
Existen actualmente en el mercado robots industriales con acoplamiento directo entre accionamiento y articulación. Se trata, sin embargo, de casos particulares dentro de la generalidad que en los robots industriales actuales supone la existencia de sistemas de transmisión junto con reductores para el acoplamiento entre actuadores y articulaciones.
Es de esperar que un buen sistema de transmisión cumpla con una serie de características básicas:

debe tener un tamaño y peso reducido;
se ha de evitar que presente juegos u holguras considerables;
se deben buscar transmisiones con gran rendimiento.

Aunque no existe un sistema de transmisión especifico para los robots, sí existen algunos usados con mayor frecuencia, y que se mencionan en la tabla siguiente. La clasificación se ha realizado sobre la base del tipo de movimiento posible en la entrada y la salida: lineal o circular.



Sistemas de transmisión para robots

Entrada-Salida
Denominación
Ventajas
Inconvenientes
Circular-Circular Engranaje
Correa dentada
Cadena
Paralelogramo
Cable Pares altos
Distancia grande
Distancia grande Holguras
Ruido
Giro limitado
Deformabilidad
Circular-Lineal Tornillo sin fin
Cremallera Poca holgura
Holgura media Rozamiento
Rozamiento
Lineal-Circular Paralelogramo articulado
Cremallera Holgura media Control difícil
Rozamiento



En esta tabla también quedan reflejadas algunas ventajas e inconvenientes propios de algunos sistemas de transmisión. Entre ellas cabe destacar la holgura o juego. Es muy importante que el sistema de transmisión a utilizar no afecte al movimiento que transmite, ya sea por el rozamiento inherente a su funcionamiento o por las holguras que su desgaste pueda introducir. También hay que tener en cuenta que el sistema de transmisión sea capaz de soportar un funcionamiento continuo a un par elevado y, a ser posible, entre grandes distancias.

Las transmisiones más habituales son aquellas que cuentan con movimiento circular tanto a la entrada como a la salida. Incluidas en éstas se encuentran los engranajes, las correas dentadas y las cadenas.






Reductores

En cuanto a los reductores, al contrario que con las transmisiones, sí existen determinados sistemas usados de manera preferente en los robots industriales. Esto se debe a que a los reductores utilizados en robótica se les exigen unas condiciones de funcionamiento muy restrictivas. La exigencia de estas características viene motivada por las altas prestaciones que se le piden al robot en cuanto a precisión y velocidad de posicionamiento. La siguiente tabla muestra valores típicos de los reductores para robótica actualmente empleados.

Actuadores
Los actuadores tienen como misión generar el movimiento de los elementos del robot según las ordenes dadas por la unidad de control. Se clasifican en tres grandes grupos, según la energía que utilizan:
Neumáticos
Hidráulicos
Eléctricos

Los actuadores neumáticos utilizan el aire comprimido como fuente de energía y son muy indicados en el control de movimientos rápidos, pero de precisión limitada. Los motores hidráulicos son recomendables en los manipuladores que tienen una gran capacidad de carga, junto a una precisa regulación de velocidad. Los motores eléctricos son los más utilizados, por su fácil y preciso control, así como por otras propiedades ventajosas que establece su funcionamiento, como consecuencia del empleo de la energía eléctrica. Más tarde se proporcionará una comparación detallada entre los diferentes tipos de actuadores utilizados en robótica.
Cada uno de estos sistemas presenta características diferentes, siendo preciso evaluarlas a la hora de seleccionar el tipo de actuador más conveniente. Las características a considerar son, entre otras:


Potencia
Controlabilidad
Peso y volumen
Precisión
Velocidad
Mantenimiento
Coste





Actuadores neumáticos

En ellos la fuente de energía es aire a presión entre 5 y 10 bar. Existen dos tipos de actuadores neumáticos:

Cilindros neumáticos
Motores neumáticos (de aletas rotativas o de pistones axiales).





Cilindros

En los primeros se consigue el desplazamiento de un émbolo encerrado en un cilindro como consecuencia de la diferencia de presión a ambos lados de aquél. Los cilindros neumáticos pueden ser de simple o de doble efecto. En los primeros, el émbolo se desplaza en un sentido como resultado del empuje ejercido por el aire a presión, mientras que en el otro sentido se desplaza como consecuencia del efecto de un muelle (que recupera al émbolo a su posición en reposo).
En los cilindros de doble efecto el aire a presión es el encargado de empujar al émbolo en las dos direcciones, al poder ser introducido de forma arbitraria en cualquiera de las dos cámaras.


Normalmente, con los cilindros neumáticos sólo se persigue un posicionamiento en los extremos del mismo y no un posicionamiento continuo. Esto último se puede conseguir con una válvula de distribución (generalmente de accionamiento directo) que canaliza el aire a presión hacia una de las dos caras del embolo alternativamente. Existen, no obstante, sistemas de posicionamiento continuo de accionamiento neumático, aunque debido a su coste y calidad todavía no resultan competitivos.




Motores neumáticos

En los motores neumáticos se consigue el movimiento de rotación de un eje mediante aire a presión. Los dos tipos más utilizados son los motores de aletas rotativas y los motores de pistones axiales.
Los motores de pistones axiales tienen un eje de giro solidario a un tambor que se ve obligado a girar ente las fuerzas que ejercen varios cilindros, que se apoyan sobre un plano inclinado. Otro método común más sencillo de obtener movimientos de rotación a partir de actuadores neumáticos, se basa en el empleo de cilindros cuyo émbolo se encuentra acoplado a un sistema de piñón-cremallera.


En general y debido a la compresibilidad del aire, los actuadores neumáticos no consiguen una buena precisión de posicionamiento. Sin embargo, su sencillez y robustez hacen adecuado su uso en aquellos casos en los que sea suficiente un posicionamiento en dos situaciones diferentes (todo o nada). Por ejemplo, son utilizados en manipuladores sencillos, en apertura y cierre de pinzas o en determinadas articulaciones de algún robot (como el movimiento vertical del tercer grado de libertad de algunos robots tipo SCARA).
Siempre debe tenerse en cuenta que el empleo de un robot con algún tipo de accionamiento neumático deberá disponer de una instalación de aire comprimido, incluyendo: compresor, sistema de distribución (tuberías, electro válvulas), filtros, secadores, etc. No obstante, estas instalaciones neumáticas son frecuentes y existen en muchas de las fábricas donde se da cierto grado de automatización.




Actuadores hidráulicos

Este tipo de actuadores no se diferencia mucho de los neumáticos. En ellos, en vez de aire se utilizan aceites minerales a una presión comprendida normalmente entre los 50 y 100 bar, llegándose en ocasiones a superar los 300 bar. Existen, como en el caso de los neumáticos, actuadores del tipo cilindro y del tipo motores de aletas y pistones.
Sin embargo, las características del fluido utilizado en los actuadores hidráulicos marcan ciertas diferencias con los neumáticos. En primer lugar, el grado de compresibilidad de los aceites usados es considerablemente menor al del aire, por lo que la precisión obtenida en este caso es mayor. Por motivos similares, es más fácil en ellos realizar un control continuo, pudiendo posicionar su eje en todo un intervalo de valores (haciendo uso del servocontrol) con notable precisión. Además, las elevadas presiones de trabajo, diez veces superiores a las de los actuadores neumáticos, permiten desarrollar elevadas fuerzas y pares.
Por otra parte, este tipo de actuadores presenta estabilidad frente a cargas estáticas. Esto indica que el actuador es capaz de soportar cargas, como el peso o una presión ejercida sobre una superficie, sin aporte de energía (para mover el embolo de un cilindro sería preciso vaciar este de aceite). También es destacable su eleva capacidad de carga y relación potencia-peso, así como sus características de auto lubricación y robustez.
Frente a estas ventajas existen ciertos inconvenientes. Por ejemplo, las elevadas presiones a las que se trabaja propician la existencia de fugas de aceite a lo largo de la instalación. Asimismo, esta instalación es mas complicada que la necesaria para los actuadores neumáticos y mucho más que para los eléctricos, necesitando de equipos de filtrado de partículas, eliminación de aire, sistemas de refrigeración y unidades de control de distribución.
Los accionamientos hidráulicos se usan con frecuencia en aquellos robots que deben manejar grandes cargas (de 70 a 205kg).

Volver al principio de página

Actuadores eléctricos

Las características de control, sencillez y precisión de los accionamientos eléctricos han hecho que sean los mas usados en los robots industriales actuales. 
Dentro de los actuadores eléctricos pueden distinguirse tres tipos diferentes: